Expertise / Resources / Presentations / Reinforcement learning for efficient scheduling in complex semiconductor equipment

Reinforcement Learning for Efficient Scheduling in Complex Semiconductor Equipment

We presented this topic in an on-demand video at the ASMC Conference 2020 (August 25-27, 2020)

Presentation cover

Semiconductor cluster tools add an integral component to the modern semiconductor manufacturing process. These complex tools provide a flexible deployment option to group multiple processing steps into a single piece of equipment, allowing for more efficient processing. They also contribute to a reduction in the number of times a wafer must go through the atmospheric-vacuum-atmospheric cycle. These highly automated tools present a complex scheduling challenge where process-specific requirements are balanced against a need to achieve maximum wafer throughput in a fault tolerant manner. Previous work demonstrated that a reinforcement learning algorithm would be suitable for automated generation of efficient planners for simple tools. This investigation looked at how these same techniques could be extended to operate on more complex equipment.

Watch this quick preview

Download script
Want the webinar recording? Tell us about yourself.

I consent to receiving commercial messages from PEER Group regarding products, services, events, and general company news updates. I can unsubscribe at any time.*

Thank you for your request. It has been sent.
There was an error trying to send your request. Please try again later.

We take your data privacy seriously! At PEER Group, we strive to provide a safe online experience for our visitors. For more information on how we collect, use, and protect your personal data, see our privacy policy.